Phosphate stimulates myotube atrophy through autophagy activation: evidence of hyperphosphatemia contributing to skeletal muscle wasting in chronic kidney disease
نویسندگان
چکیده
BACKGROUND Accelerated muscle atrophy is associated with a three-fold increase in mortality in chronic kidney disease (CKD) patients. It is suggested that hyperphosphatemia might contribute to muscle wasting, but the underlying mechanisms remain unclear. Although evidence indicates that autophagy is involved in the maintenance of muscle homeostasis, it is not known if high phosphate levels can result in activation of autophagy, leading to muscle protein loss. METHODS Immortalized rat L6 myotubes were exposed to a high concentration of phosphate, with or without autophagy inhibition. Myotube atrophy was examined by phase contrast microscopy. Autophagic activity was assessed by measuring the expression of microtubule-associated protein 1 light chain 3 (LC3) and p62 using quantitative real-time polymerase chain reaction and western blot. RESULTS Phosphate induced cell atrophy in L6 myotubes in a dose- and time-dependent manner, and these responses were not associated with calcification or osteogenesis. Phosphate also dose- and time-dependently increased the LC3-II/LC3-I ratio. Inhibition of autophagy with wortmannin or knockdown of Atg5 significantly suppressed myotube atrophy caused by high phosphate concentration. CONCLUSIONS High phosphate concentration induces muscle cell atrophy through the activation of autophagy. Targeting autophagy could be a therapeutic strategy for preventing muscle wasting caused by hyperphosphatemia.
منابع مشابه
Myostatin Activates the Ubiquitin-Proteasome and Autophagy-Lysosome Systems Contributing to Muscle Wasting in Chronic Kidney Disease
Our evidence demonstrated that CKD upregulated the expression of myostatin, TNF-α, and p-IkBa and downregulated the phosphorylation of PI3K, Akt, and FoxO3a, which were also associated with protein degradation and muscle atrophy. The autophagosome formation and protein expression of autophagy-related genes were increased in muscle of CKD rats. The mRNA level and protein expression of MAFbx and ...
متن کاملSerum Amyloid A Induces Toll-Like Receptor 2-Dependent Inflammatory Cytokine Expression and Atrophy in C2C12 Skeletal Muscle Myotubes
BACKGROUND Skeletal muscle wasting is an important comorbidity of Chronic Obstructive Pulmonary Disease (COPD) and is strongly correlated with morbidity and mortality. Patients who experience frequent acute exacerbations of COPD (AECOPD) have more severe muscle wasting and reduced recovery of muscle mass and function after each exacerbation. Serum levels of the pro-inflammatory acute phase prot...
متن کاملThe mechanism of phosphorus as a cardiovascular risk factor in CKD.
Hyperphosphatemia and vascular calcification have emerged as cardiovascular risk factors among those with chronic kidney disease. This study examined the mechanism by which phosphorous stimulates vascular calcification, as well as how controlling hyperphosphatemia affects established calcification. In primary cultures of vascular smooth muscle cells derived from atherosclerotic human aortas, ac...
متن کاملMyostatin promotes the wasting of human myoblast cultures through promoting ubiquitin-proteasome pathway-mediated loss of sarcomeric proteins.
Myostatin is a negative regulator of skeletal muscle growth and in fact acts as a potent inducer of "cachectic-like" muscle wasting in mice. The mechanism of action of myostatin in promoting muscle wasting has been predominantly studied in murine models. Despite numerous reports linking elevated levels of myostatin to human skeletal muscle wasting conditions, little is currently known about the...
متن کاملSatellite cell dysfunction and impaired IGF-1 signaling cause CKD-induced muscle atrophy.
Muscle wasting in chronic kidney disease (CKD) begins with impaired insulin/IGF-1 signaling, causing abnormal protein metabolism. In certain models of muscle atrophy, reduced satellite cell function contributes to atrophy, but how CKD affects satellite cell function is unknown. Here, we found that isolated satellite cells from mice with CKD had less MyoD, the master switch of satellite cell act...
متن کامل